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Closed almost-periodic orbits in semiclassical quantization of generic polygons
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Theoretical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India

~Received 17 August 1999; revised manuscript received 12 January 2000!

Periodic orbits are the central ingredients of modern semiclassical theories and corrections to these are
generally nonclassical in origin. We show here that, for the class of generic polygonal billiards, the corrections
are predominantly classical in origin owing to the contributions from closed almost-periodic~CAP! orbit
families. Furthermore, CAP orbit families outnumber periodic families but have comparable weights. They are
hence indispensable for semiclassical quantization.

PACS number~s!: 05.45.Mt, 05.45.Ac
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There exists an approximate dual relationship between
spectrum of quantum energy eigenvalues and the clas
length spectrum of periodic orbits and this forms the cen
theme of modern semiclassical theories. This duality w
first discovered for the case of hyperbolic dynamics wh
all periodic orbits are isolated and unstable@1# and it was
subsequently extended to the case of marginally stable
tems where periodic orbits occur in families@2#. In particu-
lar, within the class of billiard systems~particles moving
freely inside an enclosure and reflecting specularly from
walls!, such a duality exists for polygons that are margina
stable and where periodic orbits with even bounces occu
bands@3#.

In general, there are other~weaker! nonclassicalcontribu-
tions that make the relationship only approximate@4# and
must be included at finite energy. For special cases, how
~the tilted stadium billiard@12# and the truncated hyperbol
billiard @13#!, there is a source of classical correction as w
The aim of this paper is to show that, for an entire class
systems, corrections to the periodic orbit sum are predo
nantly classical in origin and are due to closed almos
periodic orbits. Also, because they are more numerous
have weights comparable to those of periodic orbit famili
such orbits are indispensable at finite energies. First, h
ever, we shall outline the key steps leading to thesemiclas-
sical trace formulawhere periodic orbits are the sole clas
cal ingredients.

A convenient starting point is the relation@1#

(
n

1

E2En
5E dqG~q,q;E! ~1!

.E dqGs.c.~q,q;E! ~2!

whereG andGs.c. refer, respectively, to the exact and sem
classical energy dependent propagator~Green’s function!
and $En% are the energy eigenvalues. The approxim
propagatorGs.c. is obtained from a Fourier transform of th
semiclassical time dependent propagator@1# and for a bil-
liard

Gs.c~q,q8;E!52ı(
1

A8pıkl~q,q8!
eıkl(q,q8)2ımp/2,

~3!
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where the sum runs over all orbits at energyE5k2 between
q and q8 having lengthl (q,q8) and m is the associated
Maslov index. For convenience, we have chosen the m
m51/2 and\51.

In the limit k→`, the amplitude term in Eq.~3! varies
slowly and can be regarded as a constant. The contributio
a particular orbit thus depends solely on the rapidity w
which its action changes asq is varied. For periodic orbits
the actionS(q,q) does not vary along the orbit. Further, if
occurs in a band, the action does not vary in the transve
direction either, and theq integration merely picks up the
areaap of the primitive band. Thus

r~E!5(
n

d~E2En!

52
1

p
lim
e→0

Im
1

E1 i e2En

.rav~E!1(
p

(
r 51

` ap

A8p3krl p

cos~krl p2p/4!

2(
p8

(
r 851

` l p8

4pk
cos~kr8l p8!, ~4!

whererav is the average density of states and the sums o
p andp8 run over primitivefamiliesand ~marginally stable!
isolated orbits, respectively, having lengthl p .

For an isolatedunstableperiodic orbit on the other hand
the transverse direction leads to closed orbits with acti
that vary depending on the stability of the periodic orbit, a
its contribution to the trace depends on the eigenvalues of
Jacobian matrix arising from a linearization of the transve
flow. In contrast, closed nonperiodic orbits generally ha
negligible weight since their action varies rapidly withq. In
the case of the tilted stadium@12#, however, there exists a
family of closed nonperiodic orbits for which the variation
action across the family~bouncing between the straigh
edges! is small and its contribution can be of the same ord
as the bouncing-ball periodic orbit family in the zero-tilt st
dium. Due to its close association with orbit families
straight-edged billiards, it is surprising to note that diffra
tion @6–11# is still considered the most significant source
5129 ©2000 The American Physical Society
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5130 PRE 61DEBABRATA BISWAS
correction in generic polygonal enclosures. While this is c
tainly true when the set of allowed momenta is small, gene
polygons have additional classical contributions that are
far more important.

To underscore this point, consider an arbitrary polygonTi
obtained by perturbing another arbitrary polygonT. The
slight change in the shape of the enclosure results in a s
change in the quantal eigenenergies so that the structu
the length spectrumS(x) @the power spectrum ofr(k)
52kr(E)] is largely preserved and there are only min
variations in peak heights~see Fig. 1!. However, the spec
tram of periodic orbit lengths inT and Ti are radically dif-
ferent as we shall shortly demonstrate. There is thus an
parent paradox which cannot be resolved by invok
diffraction since their contributions areO(k21) at best@15#,
compared to theO(k21/2) contributions of geometric peri
odic families.

The change in length spectrum of periodic orbits up
perturbation is best illustrated by comparing the equilate
andT1 triangles. As in the case of all rational polygons, t
invariant surface ofT1 is two dimensional and topologicall
equivalent to a sphere withg holes, where g51
1(N/2)( i(mi21)/ni , $mip/ni% are the internal angles o
the triangle, andN is the least common multiple of$ni%.
Thus for theT1 triangle,g51000, while for the equilatera
triangle,g51. Note that the number of allowed momentu
values is 2N so that if N is large the probability that two
segments of a trajectory have a small angle intersectio
large. Thus, even though the boundary is only slightly p
turbed, the structure of the invariant surface changes r
cally. It may thus be expected that the spectrum of perio
orbit lengths in the two systems will be very different
well. In the integrable case, these invariant trajectories
on the torus and are labeled by the winding numb
(M1 ,M2), which count the number of times the orbit go
around the two irreducible circuits. In the nonintegrable ca
very little prior information is available@14#, and we shall
analyze the situation to demonstrate that the symbol

FIG. 1. Length spectrumS(x) of the equilateral and
(1001p/3000,999p/3000) triangle~referred to asT1) The perim-
eter in both cases is 1. The arrows mark the positions of orbits
are periodic in the equilateral triangle but are almost periodic inT1.
The full and dashed lines correspond to the equilateral andT1
triangles, respectively. In both cases, the first 1100 levels have
used to obtainS(x).
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quences of periodic orbits in the equilateral triangle do
necessarily lead to periodic orbits inT1.

For the triangle enclosures, we shall use the symb
$1,2,3% for the three sides@16#. A trajectory can then be
labeled by a string of symbolss1s2•••sn wheresiP$1,2,3%.
Thus a sequence 1323 denotes a trajectory that reflect
sides 1, 3, 2, and 3 respectively. Let us denote byRi( i
51,3) the 232 reflection matrices of the three sides. The
can be expressed in terms of the angleu i between the out-
ward normal (n̂i) to a side and the positiveX axis,

Ri5S 2cos~2u i ! 2sin~2u i !

2sin~2u i ! cos~2u i !
D . ~5!

Thus, for the sequence 1323, the initial and final velocit
are related by

S vx
f

vy
f D 5R3+R2+R3+R1S vx

i

vy
i D 5R1323S vx

i

vy
i D , ~6!

where the superscriptsf ( i ) refer respectively to final~initial!
velocitiesvW whose components arevx andvy . It is easy to
verify that when the number of reflections is odd

Rs1s2•••sn

(odd) 5S 2cos~wo! 2sin~wo!

2sin~wo! cos~wo!
D , ~7!

where wo52(u11u31•••1un)22(u21u41•••1un21),
while for an even number of reflections (n even!,

Rs1s2•••sn

(even) 5S cos~we! sin~we!

2sin~we! cos~we!
D , ~8!

wherewe52(u11u31•••1un21)22(u21u41•••1un).
Obviously, the initial and final velocities can be equal

the resultant reflection matrixRs1s2•••sn
has a unit eigen-

value. For evenn ~the case of bands or families!, the eigen-
values aree6ıwe so that the condition for the existence of
unit eigenvalue is

we50 mod~2p!. ~9!

For oddn, on the other hand, the product of the eigenvalu
l1l251. The eigenvector corresponding to a unit eige
value is„sin(wo/2),2cos(wo/2)… so that, if a real orbit exists
with the sequences1s2•••sn , its initial and final velocities
are equal.

In the event that a sequence repeats itself~denoted by
s1s2•••sn) and there exists a unit eigenvalue of the result
matrix Rs1s2•••sn

, stability considerations guarantee that a p
riodic orbit exists@19#. Whenn is odd, the orbit is isolated
whereas whenn is even the orbit exists in an equiactio
family.

Not all sequences are allowed, however. Further, not
repeating sequences guarantee the existence of periodi
bits due to Eq.~9!. For theT1 triangle, it is clear that the se
of repeating sequences is the same as in the equilatera
angle for short orbits. Equation.~9!, however, does not allow
all of them to be periodic. For instance, the sequence 1
results in a bouncing-ball family of periodic orbits in th
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equilateral triangle. In theT1 triangle, however, the eigen
values for this sequence are exp(6ıp/1500) so that there ca
be no periodic orbit with reflections from these sides. A
quence that is allowed, however, and leads to periodic o
families in both triangles is 123123~this is distinct from
123), since the periodicity condition@Eq. ~9!# is automati-
cally satisfied. In general, then,for an arbitrary enclosure
close to the equilateral triangle, an allowed sequence t
repeats itself in the equilateral case can be a periodic fam
only when each symbol occurs as many times in even pl
as in odd places. Thus, corresponding to the sequen
3231231231, there does not exist any periodic orbit in theT1
triangle while a periodic family exists in the equilateral ca

We have thus verified that the periodic orbits in theT1
and equilateral triangles are indeed different, even tho
short orbits follow the same sequences due to the proxim
of the two triangles. Note that this observation holds in g
eral for any arbitrary enclosureT. Upon perturbation, orbits
follow the same sequence but the periodicity condition w
not be satisfied for sequences that are periodic inT. Accord-
ing to Eq.~4! therefore, the peak positions and heights in
length spectrum should differ and we shall now show t
the similarity in length spectrum observed in Fig. 1 is due
contributions from closed almost-periodic orbit families
T1.

Consider a symbol sequence that repeats itself
exists in both the equilateral and theT1 triangles. Further,
assume that, corresponding to this sequence, there doe
exist any periodic orbit in theT1 triangle while a periodic
orbit family does exist in the equilateral case. Examples
these are the sequences3231,3231231231(l p51.5275), and
2312312312312131(l p52.5166). In every such case, on
can construct ‘‘unfolded’’ trajectories~which are straight
lines! by successive reflections of the triangle about the si
where the collision occurs. For instance~see Fig. 2!, un-
folded trajectories for the sequence 3231 can be create
first reflecting the triangle about side 3. The copy~II ! so
obtained is then reflected about side 2, the resultant c
~III ! reflected about side 3, and finally~copy IV! about side

FIG. 2. The unfolded trajectory3231 ~marked by an arrow! is
produced by successive reflections of triangle I to produce copie
III, IV and V. For the equilateral case, copies I and V have the sa
orientation and the trajectory is periodic. ForT1, the orientations
differ slightly as shown schematically on the right. As a result
orbits are closed but nonperiodic.
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1. For the equilateral triangle, the final copy~V! has the same
orientation as the initial copy~I! so that any line joining
corresponding points in the initial and final copies is an ‘‘u
folded periodic orbit.’’ In theT1 triangle, however, the fina
copy differs marginally in orientation from the initial copy s
that any line joining corresponding points in the two c
only be a closed almost-periodic orbit. Obviously, at eve
point qW there exists such a closed orbit with this sequence
long as the line joining the corresponding points~in I and V!
lies entirely within the copies generated through reflectio
Two such orbits separated byq' are shown in Fig. 2~right!.
It is easy to see that the orbits differ in length by an amo
D l 5q'tan(Du).q'Du if Du is small. Note that the above
analysis holds for other almost-periodic closed orbits as w
~such as the sequence 3231231231) and any arbitrary p
gon T. In each of these casesD l .q'Du5q'we so that the
length varies slowly if the orbit nearly closes in momentu

The correct trace formula for an arbitrary polygonT can
be derived by noting that, for a closed almost-periodic fa
ily, l (q')5 l (0)1q'we where l (0)5 l i is the length of the
orbit in the center of the band andq' varies from2wi /2 to
wi /2, wherewi is the transverse extent of the band. Assu
ing thatk is sufficiently large, the amplitude@1/l (q')# can be
treated as a constant (1/l i) and the trace formula for finitek
is then

r~E!.rav~E!1(
i

ai

A8p3kl i

3cos~kl i2p/4!
sin~kwe

( i )wi /2!

kwe
( i )wi /2

2(
p8

(
r 851

` l p8

4pk
cos~kr8l p8!. ~10!

In Eq. ~10!, the sum overi runs over closed almost-periodi
and periodic orbit families andl i is the ~average! length of
such a family. Note that ask→` the contribution of almost-
periodic orbits (we

( i )Þ0) vanishes ask23/2, so that Eq.~10!
reduces to Eq. ~4!. For de Broglie wavelengthl.
.pwiwe

( i ) , however, the (i th! closed almost-periodic orbi
family contributes with a weight comparable to that of pe
odic families@O(1/k1/2)# and hence assumes greater sign
cance than diffraction@20#. Interestingly, such orbits clearly
show up in eigenfunctions@21#, and this has been referred t
as ‘‘scarring by ghosts of periodic orbits’’ since such a pe
odic orbit exists only in a neighboring polygon. Thus a dire
resolution of the paradox lies in closed almost-periodic
bits.

To emphasize the importance of the angle between
initial and final momentum (we), we compare the powe
spectra of three different triangles,T1,T2, andT3 with the
equilateral triangle in Fig. 3. For the sequence 3231,we is
maximum forT3 and minimum forT1 so that peak heights
at 0.57 and its repetitions should be closest to those of
equilateral triangle forT1 and farthest forT3. This can in-
deed be verified from Fig. 3.

The contributions of closed almost-periodic~CAP! fami-
lies diminish with energy in accordance with Eq.~10! and

II,
e
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5132 PRE 61DEBABRATA BISWAS
can be observed in the length spectrum. In order to dis
guish this from the contribution of periodic families, we sh
consider the power spectrum G~x! of r(k)/k1/2,

G~x!5U (
ka<kn<kb

cos~knx!

kn
1/2

1ı (
ka<kn<kb

sin~knx!

kn
1/2 U ,

~11!

such that for a fixedkb2ka the peak height of periodic fami
lies remains unaltered irrespective ofkb . Figure 4 show
plots ofG(x) for theT2 triangle using two differentk inter-
vals, ~21,521! and ~200,700!. In both cases, the peak heig
remains unaltered atx51.0 corresponding to a periodic fam
ily. The peak atx50.57, however, diminishes in height a
the interval shifts to a higher energy. Also shown is a plot
the equilateral triangle which remains unchanged so long
kb2ka is fixed.

Precise checks~without using any window function! be-
tween the observed and expected peak height atx50.57

FIG. 3. A comparison of the length spectrum for four differe
triangles EQUI—equilateral, T1—(1.001p/3,0.999p/3,p/3),
T2—(1.01p/3,0.99p/3,p/3), and T3—(1.01 5 13p/3,0.984 87
p/3,p/3). The arrows are at 0.577 and 1.154, corresponding to
sequence 3231. In all cases, the first 1100 levels have been us
obtainS(x). Note thatT1 is practically indistinguishable from th
equilateral curve whileT3 is farthest from EQUI. The correspond
ing values of we for the four cases are EQUI—0
T1—0.000 667p,T2—0.006 667p, and T3—0.010 087p. In con-
trast, the peak atx51 remains unchanged for all four triangle
since it corresponds to a periodic orbit (123123).
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show that the value expected from Eq.~10! is 11.3 while the
observed height is 9.6. Undoubtedly, there are other sou
of corrections, but the dominant contribution at this value
x is due to the closed almost-periodic family.

Finally, though the examples chosen are close to
(p/3,p/3) triangle, we wish to reiterate that closed almo
periodic families contribute away from the neighborhood
integrable enclosures as well. To see this, consider an a
trary triangleT. In its immediate neighborhood, there exis
an infinity of triangles$T( i )%, each with a distinct periodic
orbit spectrumbut having the same symbol sequence
short trajectories. Assume now that there exists a perio
orbit corresponding to the sequenceSk for the triangleT( j ).
Then, for all other triangles in its neighborhood, this s
quence contributes an amount~nearly! equal to the periodic
orbit contribution ofT( j ), providedpwiwe

( i )!l. Thus, corre-
sponding toevery periodic family in each of the triangles
$T( i )%, there exists an almost-periodic family in the triangleT
whose contribution is comparable to that of periodic or
families in these neighboring triangles.

To conclude, we have demonstrated that closed alm
periodic orbit families are more numerous than and ha
weights comparable to those of periodic families in polyg
nal billiards. They are thus indispensable for the semicla
cal quantization of generic polygons.

e
to

FIG. 4. A comparison ofG(x) for two energy ranges for theT2
triangle together with a typical plot for the equilateral triang
~marked EQUI_21_521 withka521 andkb5521) whenkb2ka

5500. Note the diminishing peak heights for the rangek
P(200,700).
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