PHYSICAL REVIEW E VOLUME 61, NUMBER 5 MAY 2000

Closed almost-periodic orbits in semiclassical quantization of generic polygons
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Periodic orbits are the central ingredients of modern semiclassical theories and corrections to these are
generally nonclassical in origin. We show here that, for the class of generic polygonal billiards, the corrections
are predominantly classical in origin owing to the contributions from closed almost-peiGé&iE) orbit
families. Furthermore, CAP orbit families outnumber periodic families but have comparable weights. They are
hence indispensable for semiclassical quantization.
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There exists an approximate dual relationship between thehere the sum runs over all orbits at enefgyy k? between
spectrum of quantum energy eigenvalues and the classicgl and q’ having lengthl(q,q’) and x is the associated
length spectrum of periodic orbits and this forms the centraMaslov index. For convenience, we have chosen the mass
theme of modern semiclassical theories. This duality wagn=1/2 ands=1.
first discovered for the case of hyperbolic dynamics where In the limit k—o, the amplitude term in Eq3) varies
all periodic orbits are isolated and unstabld and it was  slowly and can be regarded as a constant. The contribution of
subsequently extended to the case of marginally stable sys- particular orbit thus depends solely on the rapidity with
tems where periodic orbits occur in familig8]. In particu-  which its action changes agis varied. For periodic orbits,
lar, within the class of billiard system@articles moving the actionS(q,q) does not vary along the orbit. Further, if it
freely inside an enclosure and reflecting specularly from thevxccurs in a band, the action does not vary in the transverse
walls), such a duality exists for polygons that are marginallydirection either, and the integration merely picks up the
stable and where periodic orbits with even bounces occur iareaa,, of the primitive band. Thus
bands[3].

In general, there are othé@weakej nonclassicakontribu-
tions that make the relationship only approximédé and

p(E)=2 S(E—Ey)
must be included at finite energy. For special cases, however n

(the tilted stadium billiard12] and the truncated hyperbola 1 1

billiard [13]), there is a source of classical correction as well. =——lim Im—

The aim of this paper is to show that, for an entire class of Te.o Etie—E,

systems, corrections to the periodic orbit sum are predomi- .

nantly classical in origin and are due to closed almost- ap

periodic orbits. Also, because they are more numerous and ~pa(E)+2 X \/?wik”p_”m)
have weights comparable to those of periodic orbit families, por=1 V8mkrl,

such orbits are indispensable at finite energies. First, how- =,

ever, we shall outline the key steps leading to $keeniclas- > > Lcos{kr’lp/), (4)
sical trace formulawhere periodic orbits are the sole classi- o' =1 4k

cal ingredients.
A convenient starting point is the relati¢f]

1
> E_—En:J'qu(CLQ;E) 1

:f dqGsc.(a,0;E) 2
whereG andGg . refer, respectively, to the exact and semi-
classical energy dependent propagatGreen’s functioh
and {E,} are the energy eigenvalues. The approximat
propagatoiG, . is obtained from a Fourier transform of the
semiclassical time dependent propagdtbfr and for a bil-
liard
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wherep,, is the average density of states and the sums over
p andp’ run over primitivefamiliesand (marginally stablg
isolated orbits respectively, having length, .

For an isolatedinstableperiodic orbit on the other hand,
the transverse direction leads to closed orbits with actions
that vary depending on the stability of the periodic orbit, and
its contribution to the trace depends on the eigenvalues of the
Jacobian matrix arising from a linearization of the transverse
flow. In contrast, closed nonperiodic orbits generally have
negligible weight since their action varies rapidly wihin

Ghe case of the tilted stadiufi2], however, there exists a

family of closed nonperiodic orbits for which the variation of
action across the familybouncing between the straight
edges is small and its contribution can be of the same order
as the bouncing-ball periodic orbit family in the zero-tilt sta-
dium. Due to its close association with orbit families in
straight-edged billiards, it is surprising to note that diffrac-
tion [6—11] is still considered the most significant source of
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60 . . . . . . . . quences of periodic orbits in the equilateral triangle do not
necessarily lead to periodic orbits L.
501 1 For the triangle enclosures, we shall use the symbols
{1,2,3} for the three side$16]. A trajectory can then be
40!l | labeled by a string of symbolss,- - - s, wheres; €{1,2,3}.
Thus a sequence 1323 denotes a trajectory that reflects off
X 30} | sides 1, 3, 2, and 3 respectively. Let us denote Ry
w =1,3) the 2<2 reflection matrices of the three sides. These
o0l can be expressed in terms of the anglébetween the out-
ward normal 6i) to a side and the positivk axis,
oy (—cos(Zﬁi) —sin(20i))
o fb T AT | "\ —sin(2¢) cog20,) | ©
04 06 08 x12 14 2

Thus, for the sequence 1323, the initial and final velocities
FIG. 1. Length spectrumS(x) of the equilateral and are related by

(100147/3000,999:/3000) triangle(referred to asT1) The perim-
eter in both cases is 1. The arrows mark the positions of orbits that v)f(
are periodic in the equilateral triangle but are almost perioditlin ¢ | =Rs°R2°Rz°Ry
The full and dashed lines correspond to the equilateral Bhd y
triangles, respectively. In both cases, the first 1100 levels have be
used to obtair5(x).

\ vy
i |=Rizg i, (6)
y Uy

v v

Where the superscripfgi) refer respectively to finginitial)

velocitiesv whose components atg, andv, . It is easy to

correction in generic polygonal enclosures. While this is cerVe'ify that when the number of reflections is odd

tainly true when the set of allowed momenta is small, generic
polygons have additional classical contributions that are by Ré"gd.)..s
far more important. 1727 n
To underscore this point, consider an arbitrary poly@en
obtained by perturbing another arbitrary polygdn The  Whereé ¢o=2(01+ 63+ -+ 6n) —2(62+ 04+ - -+ 051),
slight change in the shape of the enclosure results in a slighthile for an even number of reflectiona even,
change in the quantal eigenenergies so that the structure of .
the length spectrunS(x) [the power spectrum op(K) R(even) :( cos @e) S'n("oe)) ®)
=2kp(E)] is largely preserved and there are only minor 512" 5 | —sin(@.) cog )/’
variations in peak heightésee Fig. 1 However, the spec-
tram of periodic orbit lengths if and T; are radically dif- Where@e=2(0,+ 603+ ---+0y_1) =2(0,+ 04+ ---+6,).
ferent as we shall shortly demonstrate. There is thus an ap- Obviously, the initial and final velocities can be equal if
parent paradox which cannot be resolved by invokingthe resultant reflection matriRs s,... has a unit eigen-
diffraction since their contributions a@(k 1) at best15], value. For evem (the case of bands or familigghe eigen-
compared to thed(k~*?) contributions of geometric peri- values aree™'¢e so that the condition for the existence of a
odic families. unit eigenvalue is
The change in length spectrum of periodic orbits upon
perturbation is best illustrated by comparing the equilateral ¢e=0 mod 2m). 9
andT1 triangles. As in the case of all rational polygons, the )
invariant surface of 1 is two dimensional and topologically FOF 0ddn, on the other hand, the product of the eigenvalues
equivalent to a sphere withg holes, where g=1 Aihp=1. The eigenvector corresponqhng to a unit eigen-
+(M12)2,(m—1)/n;, {mmin;} are the internal angles of Value is(sin(e/2),— cosfp,/2)) so that, if a real orbit exists
the triangle, and\V is the least common multiple dfn;}. with the sequencs;s,- - -s,, its initial and final velocities
Thus for theT1 triangle,g= 1000, while for the equilateral '€ €qual. ,
triangle,g= 1. Note that the number of allowed momentum !N _the event that a sequence repeats it¢etoted by
values is 2V so that if \ is large the probability that two S1S2" - -s,) and there_t_amsts a unit e_|genvalue of the resultant
segments of a trajectory have a small angle intersection i§1atrixRs s .5 , stability considerations guarantee that a pe-
large. Thus, even though the boundary is only slightly persiodic orbit exists|19]. Whenn is odd, the orbit is isolated
turbed, the structure of the invariant surface changes radiwhereas whem is even the orbit exists in an equiaction
cally. It may thus be expected that the spectrum of periodidamily.
orbit lengths in the two systems will be very different as  Not all sequences are allowed, however. Further, not all
well. In the integrable case, these invariant trajectories liveepeating sequences guarantee the existence of periodic or-
on the torus and are labeled by the winding numbersits due to Eq(9). For theT1 triangle, it is clear that the set
(M{,M,), which count the number of times the orbit goesof repeating sequences is the same as in the equilateral tri-
around the two irreducible circuits. In the nonintegrable caseangle for short orbits. Equatio®), however, does not allow
very little prior information is availabl¢14], and we shall all of them to be periodic. For instance, the sequence 1323
analyze the situation to demonstrate that the symbol seesults in a bouncing-ball family of periodic orbits in the

—cog¢,) —sin(¢,)

—sin(¢,)  cog¢,) |’ @)
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1. For the equilateral triangle, the final cof)y) has the same
orientation as the initial copyl) so that any line joining
corresponding points in the initial and final copies is an “un-
folded periodic orbit.” In theT1 triangle, however, the final
copy differs marginally in orientation from the initial copy so
that any line joining corresponding points in the two can
only be a closed almost-periodic orbit. Obviously, at every

point g there exists such a closed orbit with this sequence so
long as the line joining the corresponding poifits| and V)
lies entirely within the copies generated through reflections.
Two such orbits separated loy are shown in Fig. Zright).
It is easy to see that the orbits differ in length by an amount
Al=q tan(Ad)=q, A6 if A is small. Note that the above
analysis holds for other almost-periodic closed orbits as well
) — ) (such as the sequence 3231231231) and any arbitrary poly-
FIG. 2. The unfol(_jed trajec_tor$23l (_marked by an arroWs_ onT. In each of these caséd =q, A 9=q, ¢, So that the
produced by successive .reflectlons of trlapgle | to produce copies | ength varies slowly if the orbit nearly closes in momentum.
I, IV and V. For the equilateral case, copies | and V have the same The correct trace formula for an arbitrary polygdrean

orientation and the trajectory is periodic. Fbt, the orientations . . Ry i
differ slightly as shown schematically on the right. As a result the.be derived by nating that, for a closed almost-periadic fam

: - ily, 1(q,)=1(0)+q, ¢ wherel(0)=1; is the length of the
bit losed but dic. L Lre I
orbits ate closed bl nonperiodic orbit in the center of the band amd varies from—w;/2 to
. . . . w;/2, wherew; is the transverse extent of the band. Assum-
equilateral triangle. In th@1 triangle, however, the eigen- ing thatk is sufficiently large, the amplitudel/i(q, )] can be

values for this sequence are exp{r/1500) so that there can yeateq as a constant [3/and the trace formula for finite
be no periodic orbit with reflections from these sides. A se+¢ then

guence that is allowed, however, and leads to periodic orbit
families in both triangles is 12312@&his is distinct from

123), since the periodicity conditiofEq. (9)] is automati- P(E)=an(E)+z L
cally satisfied. In general, thefgr an arbitrary enclosure i 87Kl
close to the equilateral triangle, an allowed sequence that _
repeats itself in the equilateral case can be a periodic family sin(ke{w;/2)
only when each symbol occurs as many times in even places X cogkl;— 77/4)T
as in odd places Thus, corresponding to the sequence Kepe'wi/2
3231231231, there does not exist any periodic orbit iriTthe =
triangle while a periodic family exists in the equilateral case. _ " ",
We have thus verified that the periodic orbits in the o rzl 4chos(kr o). (19

and equilateral triangles are indeed different, even though
short orbits follow the same sequences due to the proximityn Eq. (10), the sum over runs over closed almost-periodic
of the two triangles. Note that this observation holds in gen-and periodic orbit families anf| is the (averagg length of
eral for any arbitrary enclosuré Upon perturbation, orbits such a family. Note that ds— o the contribution of almost-
follow the same sequence but the periodicity condition will periodic orbits ({’+0) vanishes a& %2 so that Eq(10)
not be satisfied for sequences that are periodit.iAccord-  reduces to Eq.(4). For de Broglie wavelengthy>
ing to Eq.(4) therefore, the peak positions and heights in the> 7w, ¢{) | however, the ith) closed almost-periodic orbit
length spectrum should differ and we shall now show thafamily contributes with a weight comparable to that of peri-
the similarity in length spectrum observed in Fig. 1 is due topdic families[O(1/kY?)] and hence assumes greater signifi-
contributions from closed almost-periOdiC orbit families in cance than d|ffract|0'ﬁ20] |nteresting|y, such orbits C|ear|y
T1. show up in eigenfunction21], and this has been referred to
Consider a symbol sequence that repeats itself angs “scarring by ghosts of periodic orbits” since such a peri-
exists in both the equilateral and tA& triangles. Further, odic orbit exists only in a neighboring polygon. Thus a direct
assume that, corresponding to this sequence, there does netolution of the paradox lies in closed almost-periodic or-
exist any periodic orbit in thd'1 triangle while a periodic pits.
orbit family does exist in the equilateral case. Examples of To emphasize the importance of the angle between the
these are the sequenc231,3231231231i(,=1.5275), and initial and final momentum §.), we compare the power
2312312312312131(=2.5166). In every such case, one spectra of three different triangle$1,T2, andT3 with the
can construct “unfolded” trajectorieswhich are straight equilateral triangle in Fig. 3. For the sequence 3281,is
lines) by successive reflections of the triangle about the sidemmaximum forT3 and minimum forT1 so that peak heights
where the collision occurs. For instan¢eee Fig. 2 un- at 0.57 and its repetitions should be closest to those of the
folded trajectories for the sequence 3231 can be created Bquilateral triangle folf1 and farthest foif 3. This can in-
first reflecting the triangle about side 3. The cofl) so  deed be verified from Fig. 3.
obtained is then reflected about side 2, the resultant copy The contributions of closed almost-periodicAP) fami-
(1) reflected about side 3, and finallgopy 1V) about side lies diminish with energy in accordance with E4.0) and
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_ FIG. 3. A comparisqn of the length spectrum for four different  Fig 4. A comparison 06(x) for two energy ranges for tHE2
triangles  EQUI—equilateral, T1—(1.00%7/3,0.9997/3,7/3),  riangle together with a typical plot for the equilateral triangle

T2—(1.0%r/3,0.997/3,7/3), and T3—(1.015137/3,O.98_4 87 (marked EQUI_21_521 with,=21 andk,z=521) whenkz—k,
m/3,m/3). The arrows are at 0.577 and 1.154, corresponding to the-5qg. Note the diminishing peak heights for the range

sequence 3231. In all cases, the first 1100 levels have been used &200’700)_
obtain S(x). Note thatT1 is practically indistinguishable from the
equilateral curve whild 3 is farthest from EQUI. The correspond-
ing values of ¢, for the four cases are EQUI—O,
T1—0.000 667, T2—0.006 667, and T3—0.010 087 . In con-
trast, the peak ak=1 remains unchanged for all four triangles
since it corresponds to a periodic orbi23123).

show that the value expected from EfO) is 11.3 while the
observed height is 9.6. Undoubtedly, there are other sources
of corrections, but the dominant contribution at this value of
x is due to the closed almost-periodic family.
Finally, though the examples chosen are close to the
) .. (wI3,7/3) triangle, we wish to reiterate that closed almost-
can be observed in the length spectrum. In order to distinpeiggic families contribute away from the neighborhood of
guish this from the contribution of periodic families, we shall integrable enclosures as well. To see this, consider an arbi-
consider the power spectrum(G of p(k)/k*?, trary triangleT. In its immediate neighborhood, there exists
an infinity of triangles{T"}, each with a distinct periodic
orbit spectrumbut having the same symbol sequence for
short trajectories. Assume now that there exists a periodic
(11) orbit corresponding to the seque_rﬁ@for the triangIeT({).
Then, for all other triangles in its neighborhood, this se-
such that for a fixed;—k,, the peak height of periodic fami- quence contributes an amoumiearly equal to the periodic
lies remains unaltered irrespective kf. Figure 4 show orbit contribution of T, providedwwicpg’<)\. Thus, corre-
plots of G(x) for the T2 triangle using two different inter-  sponding toevery periodic family in each of the triangles
vals, (21,521 and (200,700. In both cases, the peak height {T(}, there exists an almost-periodic family in the triangle
remains unaltered at= 1.0 corresponding to a periodic fam- whose contribution is comparable to that of periodic orbit
ily. The peak atx=0.57, however, diminishes in height as families in these neighboring triangles.
the interval shifts to a higher energy. Also shown is a plot for To conclude, we have demonstrated that closed almost-
the equilateral triangle which remains unchanged so long ageriodic orbit families are more numerous than and have
kg—k, is fixed. weights comparable to those of periodic families in polygo-
Precise checkéwithout using any window functionbe-  nal billiards. They are thus indispensable for the semiclassi-
tween the observed and expected peak height=a0.57  cal quantization of generic polygons.

cog kpx) sin(k,x)

Gx)=| X ———+1 X —|

ko<kn=<kg k%’z ka<kn=<kg krl1/2
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